This book was written to serve as a thorough teaching text, a comprehensive source of information, and a basic reference. It is intended for advanced students, professional engineers, and researchers. It emphasizes the fundamental concepts of analysis and design of prestressed concrete structures, providing the user with the essential knowledge and tools to deal with everyday design problems, while encouraging the necessary critical thinking to tackle more complex problems with confidence.

Prestressed concrete is one of the most reliable, durable, and widely used construction materials in building and bridge projects around the world. It has made significant contributions to the construction industry, the precast manufacturing industry, and the cement industry as a whole. It has led to an enormous array of structural applications, including buildings, bridges, nuclear power vessels, TV towers, and offshore drilling platforms.

Main Features:

This updated edition
• Integrates the provisions of the 2011 ACI Building Code in text and examples
• Offers an extensive treatment of bridge analysis and design according to the 2010 AASHTO LRFD Specifications
• Offers a rigorous treatment of fundamentals as applied to serviceability and ultimate strength limit states for bending, shear, composite action, compression and tension members, and introduces some simple optimum design approaches
• Includes a large number of logical design flow charts and design examples
• Covers the basics and provides examples of applications comparing both the 2011 ACI and 2010 AASHTO LRFD code approaches to bending, shear and torsion, prestress losses, and interface shear
• Presents a chapter on strut-and-tie modeling according to the ACI Building Code with examples of anchorage zone design
• Covers slenderness effects in prestressed concrete columns, and provides load-moment interaction diagrams for prestressed columns and poles
• Offers a comprehensive treatment of the design of one- and two-way prestressed slabs
• Presents a unique treatment of prestressed tensile members by optimum design, including the design of wall for circular tanks
• Covers the time-step procedure to compute prestress losses and long-term deflections
• Offers a rigorous treatment of prestressed continuous beams
• Presents a comprehensive treatment of prestressed composite beams
• Contains more than four hundreds illustrations and photographs
• Covers sufficient material for a two-semester course on the subject
• Contains a large number of examples, an extensive updated bibliography, and an appendix with answers to study problems
• Uses consistent notation and consistent sign convention
• Uses dual units (US and SI) throughout for key equations and reference data

Chapter 1

Principle and Methods of Prestressing

Chapter 2

Prestressing Materials: Steel and Concrete

Chapter 3

The Philosophy of Design

Chapter 4

Flexure: Working Stress Analysis and Design

Chapter 5

Flexure: Ultimate Strength Analysis and Design

Chapter 6

Design for Shear and Torsion

Chapter 7

Deflection Computation and Control

Chapter 8

Computation of Prestress Losses

Chapter 9

Analysis and Design of Composite Beams

Chapter 10

Continuous Beams and Indeterminate Structures

Chapter 11

Prestressed Concrete Slabs

Chapter 12

Analysis and Design of Tensile Members

Chapter 13

Analysis and Design of Compression Members

Chapter 14

Prestressed Concrete Bridges

Chapter 15

Strut-and-Tie Modeling

Appendix A

List of Symbols

Appendix B

Unit Conversions

Appendix C

Typical Post-Tensioning Systems

Appendix D

Answers to Selected Problems

Appendix E

Typical Precast / Prestressed Beams

Index

CONTENTS

 Preface xxiii
 Acknowledgments xxix

Chapter 1 Principle and Methods of Prestressing 1
1.1 Introduction 1
1.2 Examples of Prestressing 2
1.3 History of Prestressed Concrete 4
1.4 Prestressing Methods 12
Chapter 2  Prestressing Materials: Steel and Concrete  45
  2.1  Reinforcing Steels  45
  2.2  Prestressing Steels  49
    2.2.1  Types of Prestressing Tendons  50
    2.2.2  Production Process  53
    2.2.3  Mechanical and Stress-Strain Properties  55
    2.2.4  Relaxation  58
    2.2.5  Effects of Temperature  62
    2.2.6  Fatigue  64
    2.2.7  Corrosion  68
  2.3  Concrete  70
    2.3.1  Composition  70
    2.3.2  Stress-Strain Curve  71
    2.3.3  Mechanical Properties  74
    2.3.4  Shrinkage  78
    2.3.5  Creep  81
    2.3.6  Fatigue  85
    2.3.7  Effects of Temperature  85
    2.3.8  Steam Curing  86
  2.4  Constitutive Modeling  87
    2.4.1  Stress-Strain Curve of Concrete in Compression  87
    2.4.2  Stress-Strain Curve of Reinforcing Steel in Tension  90
    2.4.3  Stress-Strain Curve of Prestressing Steels in Tension  93
  2.5  Concluding Remarks  96
    References  96
    Problems  99

Chapter 3  The Philosophy of Design  103
  3.1  What is Design?  103
  3.2  Analysis or Investigation Versus Design  104
  3.3  Design Objectives  104
  3.4  Limit State Design Philosophy  105
  3.5  Common Design Approaches  107
    3.5.1  WSD (or ASD)  109
    3.5.2  USD, SD, or LRFD  110
    3.5.3  Plastic Design, Limit Design, and Performance Based Plastic Design  113
    3.5.4  Nonlinear Design, Probabilistic Design  113
3.6 Design Codes
3.7 Loads
3.8 Allowable Stresses
  3.8.1 Concrete
  3.8.2 Prestressing Steel
  3.8.3 Reinforcing Steel
3.9 Load and Strength Reduction (or Resistance) Factors
  3.9.1 Load Factors
  3.9.2 Strength Reduction or Resistance Factors
3.10 ACI Code Viewpoint Related to Prestressed and Partially Prestressed Concrete
  3.10.1 Class Definition and Related Serviceability Design Requirements
  3.10.2 Tension Controlled and Compression Controlled Sections
3.11 Some Design Comparisons: Reinforced Versus Prestressed Concrete
  3.11.1 Practical Design Approach
  3.11.2 C-Force and C-Line
  3.11.3 Characteristic Response of RC, PC, and PPC in Bending in the Elastic Range of Behavior
  3.11.4 Curvature Computation
  3.11.5 Load Balancing Feature of Prestressing
3.12 Detailing of Reinforcement
3.13 Prestress Losses in Preliminary Design
3.14 Concluding Remarks
References

Chapter 4 Flexure: Working Stress Analysis and Design
4.1 Analysis Versus Design
4.2 Concepts of Prestressing
4.3 Notations for Flexure
  4.3.1 Example: Computation of Sectional Properties
4.4 Sign Convention
  4.4.1 Examples
4.5 Loading Stages
4.6 Allowable Stresses
4.7 Mathematical Basis for Flexural Analysis
4.8 Geometric Interpretation of the Stress Inequality Conditions
4.9 Example: Analysis and Design of a Prestressed Beam
  4.9.1 Simply Supported T Beam
  4.9.2 Simply Supported T Beam with Single Cantilever on One Side
4.10 Use of Stress Inequality Conditions for Design of Section Properties
  4.11 Examples of Use of Minimum Section Properties
    4.11.1 Minimum Weight Slab
    4.11.2 Minimum Weight Beam
    4.11.3 Selection of Optimum Beam from a Given Set of Beams
4.12 Limiting the Eccentricity along the Span
  4.12.1 Limit Kern Versus Central Kern
  4.12.2 Steel Envelopes and Limit Zone
    4.12.2.1 General Procedure
Chapter 5  Flexure: Ultimate Strength Analysis and Design  229

5.1  Load-Deflection Response  229
5.1.1  RC Versus PC at Ultimate  232
5.2  Terminology  233
5.3  Flexural Types of Failures  234
5.4  Special Notation  235
5.5  General Criteria for Ultimate Strength Design of Bending Members  238
5.5.1  Design Criteria  238
5.5.2  Minimum Reinforcement or Minimum Moment Resistance: Code Recommendations  239
5.5.3  ACI Code Provisions for Tension-Controlled, Transition, and Compression-Controlled Sections at Increasing Levels of Reinforcement  241
5.5.4  Net Tensile Strain and $c/d_0$ Ratio  246
5.5.5  Amendments Adopted in this Text  248
5.5.6  Recommendation on Maximum Reinforcement  249
5.6  Background for Analysis of Sections at Ultimate  250
5.6.1  Objective – Assumptions  250
5.6.2  Satisfying Equilibrium  253
5.7  Nominal Bending Resistance: Mathematical Formulation for Rectangular Section or Rectangular Section Behavior – Tension-Controlled  253
5.7.1  Force Equilibrium  253
5.7.2  Moment Equilibrium  255
5.7.3  Solution Procedure  255
5.7.4  Simplified Approximate Analysis  256
5.8  Stress in Prestressing Steel at Nominal Bending Resistance –
ACI Code

5.8.1 Members with Bonded Prestressing Tendons 257
5.8.2 Members with Unbonded Prestressing Tendons 258

5.9 Example: Nominal Bending Resistance of a Rectangular Section

5.9.1 Partially Prestressed Section – Simplified Approximation 259
5.9.2 Partially Prestressed Section – Using ACI Code Equation for $f_{ps}$ 260
5.9.3 Fully Prestressed Section 262
5.9.4 Unbonded Tendons 262

5.10 Nominal Bending Resistance: Mathematical Formulation for T-Section Behavior of Flanged Section

5.10.1 Condition for T-Section Behavior 262
5.10.2 Fully Prestressed Section 264
5.10.3 Partially Prestressed Section 265
5.10.4 Remark 267

5.11 Example: Nominal Bending Resistance of T-Section

5.11.1 Partially Prestressed Section 269
5.11.2 Fully Prestressed Section 271
5.11.3 Unbonded Tendons 271
5.11.4 Odd Case 272

5.12 Stress in Prestressing Steel at Nominal Bending Resistance – AASHTO LRFD Code

5.12.1 Members with Bonded Prestressing Tendons 273
5.12.2 Members with Unbonded Prestressing Tendons 273

5.13 Nominal Bending Resistance: AASHTO LRFD Code

5.13.1 Equilibrium Equations for Rectangular and Flanged Sections 275
5.13.2 Solution for Members with Bonded Tendons 276
5.13.3 Solution for Members with Unbonded Tendons 277
5.13.4 Solution for Members with Both Bonded and Unbonded Tendons 277
5.13.5 Example: PPC (Partially Prestressed Concrete) Rectangular Section by AASHTO 281
5.13.6 Example: PPC (Partially Prestressed Concrete) T-Section with Bonded Tendons (AASHTO) 259

5.14 Transition between Tension-Controlled and Compression-Controlled Section in Bending

5.14.1 $\phi$ Factor for Bending According to AASHTO 284
5.14.2 Strategy for Design 285

5.15 Concept of Reinforcing Index

5.15.1 Definitions 286
5.15.2 Meaning of $\omega_e$ 287
5.15.3 Useful Relationships 288
5.15.4 Relationship between Reinforcement Ratio, Reinforcing Index, and $c/d_e$ 290

5.16 Justification for the Definition of $\omega_e$ and $d_e$ and their Relation to the Limitations on Levels of Reinforcement and Moment Redistribution

5.16.1 Reinforced Concrete 292
5.16.2 Prestressed Concrete 292
5.16.3 Partially Prestressed Concrete 292

5.17 Derivation of Minimum Reinforcement Ratio, Minimum
Reinforcing Index, or Minimum c/d,c

5.17.1 Approximation: Minimum Reinforcement Ratio for Prestressed Concrete 293
5.17.2 Minimum Reinforcing Index for RC, PC, and PPC 294
5.17.3 Minimum c/d Ratio for RC, PC, and PPC

Rectangular Sections 296

5.18 Satisfying Ultimate Strength Design Requirements 298
5.18.1 Basis for Ultimate Strength Design (USD) 298
5.18.2 Possible Remedies to Satisfy Inadequate Nominal Bending Resistance 299

5.19 Example: Analysis or Investigation Checking for All Ultimate Strength Design Criteria 300

5.20 Reinforcement Design for Ultimate Strength 302
5.20.1 Example: Reinforcement Design for Nominal Resistance – Rectangular Section 304
5.20.2 Example: Reinforcement Design for Nominal Resistance – T Section 308

5.21 Composite Beams 310
5.22 Continuous Beams and Moment Redistribution 310

5.23 Author’s Recommendations for the Design of RC, PC, and PPC Beams at Ultimate
5.23.1 Using \( \varepsilon_{tc} \) and \( d_e \) instead of \( \varepsilon_t \) and \( d_t \)
5.23.1.1 Example of Error in Using the Net Tensile Strain in Extreme Layer of Reinforcement 312
5.23.2 T-Section Behavior 313
5.23.3 Stress \( f_{pu} \) in Bonded Tendons at Ultimate 314
5.23.4 Stress \( f_{pu} \) in Unbonded Prestressing Tendons at Ultimate 314

5.24 Additional Design Examples Based on USD 318
5.24.1 Example 1: Analysis with Unbonded Tendons Illustrating Eq. (5.103) 319
5.24.2 Example 2: Given \( A_{ps} \), Design for \( A_s \) Based on USD – Unbonded Tendons 321
5.24.3 Example 3: Given \( A_{ps} \), Design for \( A_{ps} \) Based on USD – Unbonded Tendons 323
5.24.4 Example 4: Given \( A_s \), Design for \( A_{ps} \) Based on USD – Bonded Tendons 323

5.25 Concluding Remarks 324
References 324
Problems 326

Chapter 6 Design for Shear and Torsion 331
6.1 Introduction 331
6.2 Shear Design 332
6.3 Prestressed Versus Reinforced Concrete in Shear 332
6.4 Diagonal Tension in Uncracked Sections 334
6.5 Shear Stresses in Uncracked Sections 338
6.6 Shear Cracking Behavior 340
6.7 Shear Reinforcement after Cracking 343
6.8 ACI Code Design Criteria for Shear 347
6.8.1 Basic Approach 347
6.8.2 Shear Strength Provided by Concrete 348
6.8.2.1 Conservative Design Method to Estimate \( V_c \) or \( V_c \) 349
6.8.2.2 Elaborate Design Method to Estimate $\nu_c$ or $V_c$ 350
6.8.3 Required Area of Shear Reinforcement 353
6.8.4 Limitations and Special Cases 354
6.8.5 Critical Sections for Shear 356

6.9 Design Expedients 357

6.10 Example: Design of Shear Reinforcement (ACI Code) 360
6.10.1 Conservative Method to Determine $\nu_c$ 361
6.10.2 Elaborate Method to Determine $\nu_c$ 363
6.10.3 Design for Increased Live Load: Partially Prestressed Beam 367

6.11 Derivation of Concrete Nominal Shear Strength Equations (ACI Code) 367

6.12 AASHTO General Procedure for Shear Design 371
6.12.1 General Sectional Procedure for Shear Design 373
6.12.2 Special Considerations 380
6.12.3 Example: Shear Design by AASHTO LRFD Code (Using Modified Compression Field Theory) 384
6.12.4 Simplified Shear Design Procedure by AASHTO for Prestressed and Non-Prestressed Sections 388
6.12.5 Example: Using AASHTO Simplified Shear Design Procedure 391

6.13 Torsion and Torsion Design 392
6.14 Behavior under Pure Torsion 393

6.15 Background to Stress Analysis and Design for Torsion 396
6.15.1 Torsional Stresses 396
6.15.2 Torsional Cracking Strength 398
6.15.3 Torsional Resistance after Cracking 399
6.15.4 Combined Loading 402
6.15.5 Design Theories for Torsion and Code Related Approaches 404

6.16 Design for Torsion by ACI Code 406
6.16.1 Definition of Section Parameters 406
6.16.2 Basic Assumptions and Design Strategy 407
6.16.3 Threshold Limit for Consideration of Torsion in Design – $(T_u)_{min}$ 408
6.16.4 Critical Section for Torsion 409
6.16.5 Maximum Allowable Torsional Moment Strength – Upper Limit 409
6.16.6 Transverse Reinforcement Design 411
6.16.7 Longitudinal Torsion Reinforcement 412
6.16.8 Combining Shear and Torsion Reinforcement 413
6.16.9 Minimum Torsion Reinforcement 413
6.16.10 Spacing and Detailing 414
6.16.11 Type of Torsion Reinforcement 414
6.16.12 Design Steps for Combined Torsion and Shear 416

6.17 Example: Torsion Design of a Prestressed Beam 416
6.18 Shear and Torsion in Partially Prestressed Members 419
6.19 Importance of Transverse Reinforcement 420

References 421
Problems 423

Chapter 7 Deflection Computation and Control 429
7.1 Serviceability 429
7.2 Deflection: Types and Characteristics 430
  7.2.1 Terminology / Notation 430
  7.2.2 Key Variables Affecting Deflections in a Given Beam 431
7.3 Theoretical Deflection Derivations 432
  7.3.1 Moment-Area Theorems 434
  7.3.2 Example 436
7.4 Short-Term Deflections in Prestressed Members 437
  7.4.1 Uncracked Members 437
  7.4.2 Cracked Members 440
7.5 Background to Understanding Long-Term Deflection 446
7.6 Additional Long-Term Deflection: Simplified Prediction Methods 448
  7.6.1 Additional Long-Term Deflection Using ACI Code Multiplier 450
  7.6.2 Additional Long-Term Deflection Using Branson’s Multipliers 450
  7.6.3 Additional Long-Term Deflection Using Martin’s Multiplier 451
  7.6.4 Additional Long-Term Deflection: Heuristic or “Rule of Thumb” Method 452
  7.6.5 Discussion 452
7.7 Deflection Limitations 453
7.8 Strategy for Checking Deflection Criteria 455
7.9 Example: Deflection of Uncracked or Cracked Prestressed Beam 456
  7.9.1 Fully Prestressed Beam – Uncracked under Full Service Load 457
  7.9.2 Partially Prestressed Beam 459
7.10 Integrating the Modulus of Concrete into Time-Dependent Deflection Calculations 462
  7.10.1 Age-Adjusted Effective Modulus 462
  7.10.2 Equivalent Modulus 463
  7.10.3 Equivalent Cyclic-Dependent Modulus 464
7.11 Long-Term Deflection by Incremental Time Steps 464
  7.11.1 Theoretical Approach 464
  7.11.2 Simplified C-Line Approach 465
7.12 Example: Time-Dependent Deflection Using the C-Line Approach and Comparisons 472
  7.12.1 Standard Precast Prestressed Double-T Beam 472
  7.12.2 Comparison of Long-Term Deflections Predicted from Different Methods 477
7.13 Time-Dependent Deflection Using C-Line Approach for Example 7.9.1 479
7.14 Deflection Control 481
7.15 Effective Moment of Inertia - Revisited 482
7.16 Concluding Remarks 484
  References 485
  Problems 486

Chapter 8 Computation of Prestress Losses 491
8.1 Sources of Loss of Prestress 491
8.2 Total Losses in Pretensioned Members 494
8.3 Total Losses in Posttensioned Members 497
8.4 Methods for Estimating Prestress Losses
8.5 Lump Sum Estimate of Total Losses
  8.5.1 Background
  8.5.2 Lump Sum Estimate of Time-Dependent Prestress Losses: AASHTO LRFD
    8.5.2.1 Non Composite Members
    8.5.2.2 Composite Members
    8.5.2.3 Refined Estimate of Time Dependent Losses
8.6 Separate Lump Sum Estimate of Each Time-Dependent Loss
  – AASHTO LRFD
  8.6.1 Total Loss Due to Shrinkage
  8.6.2 Total Loss Due to Creep
  8.6.3 Total Loss Due to Relaxation
  8.6.4 Losses for Deflection Calculations
  8.6.5 Example: Losses Due to Relaxation
8.7 Loss Due to Elastic Shortening
  8.7.1 Pretensioned Construction: Approximate Method and AASHTO LRFD
  8.7.2 Pretensioned Construction: Accurate Method
  8.7.3 Posttensioned Construction: AASHTO LRFD
  8.7.4 Posttensioned Construction: Accurate Method
8.8 Example: Elastic Shortening Loss in Pretensioned Beam
8.9 Example: Computation of Prestress Losses for a Pretensioned Beam by Lump Sum Estimates of Total and Separate Losses
  8.9.1 Lump Sum Estimate of Total Losses by AASHTO LRFD
  8.9.2 Lump Sum Estimates of Separate Losses by AASHTO LRFD
8.10 Example: Typical Stress History in Strands
8.11 Time-Dependent Loss Due to Steel Relaxation
8.12 Time-Dependent Loss Due to Shrinkage
  8.12.1 Shrinkage Strain Recommended in AASHTO LRFD
  8.12.2 Example: Shrinkage Loss Assuming No Other Loss Occurs
8.13 Time-Dependent Loss Due to Creep
  8.13.1 Creep Coefficient Recommended in AASHTO LRFD
  8.13.2 Example: Creep Loss Assuming No Other Loss Occurs
8.14 Prestress Losses by Time-Step Method
8.15 Example: Computation of Prestress Losses for a Pretensioned Beam by Time-Step Method
8.16 Loss Due to Friction
  8.16.1 Analytical Formulation
  8.16.2 Graphical Representation
  8.16.3 Example: Computation of Losses Due to Friction
8.17 Loss Due to Anchorage Set
  8.17.1 Concept of Area Lost or Equivalent Energy Lost
  8.17.2 Example: Loss Due to Anchorage Set
8.18 Loss Due to Anchorage Set in Short Beams
  8.18.1 Example: Anchorage Set Loss in a Short Beam
8.19 Concluding Remarks
  References
  Problems
# Chapter 9

**Analysis and Design of Composite Beams**

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Types of Prestressed Concrete Composite Beams</td>
<td>565</td>
</tr>
<tr>
<td>9.2</td>
<td>Advantages of Composite Construction</td>
<td>566</td>
</tr>
<tr>
<td>9.3</td>
<td>Particular Design Aspects of Prestressed Composite Beams</td>
<td>568</td>
</tr>
<tr>
<td>9.4</td>
<td>Loading Stages, Shored Versus Unshored Beams</td>
<td>569</td>
</tr>
<tr>
<td>9.5</td>
<td>Effective and Transformed Flange Width and Section Properties</td>
<td>570</td>
</tr>
<tr>
<td>9.5.1</td>
<td>Effective Flange Width</td>
<td>570</td>
</tr>
<tr>
<td>9.5.2</td>
<td>Transformed Flange Width</td>
<td>572</td>
</tr>
<tr>
<td>9.5.3</td>
<td>Cross Section Properties of Composite Section</td>
<td>574</td>
</tr>
<tr>
<td>9.6</td>
<td>Interface Shear or Horizontal Shear</td>
<td>575</td>
</tr>
<tr>
<td>9.6.1</td>
<td>Evaluation of Horizontal Shear</td>
<td>575</td>
</tr>
<tr>
<td>9.6.2</td>
<td>ACI Code Provisions for Horizontal Shear at Contact Surface</td>
<td>578</td>
</tr>
<tr>
<td>9.6.2.1</td>
<td>Shear Transfer Resistance</td>
<td>578</td>
</tr>
<tr>
<td>9.6.2.2</td>
<td>Shear Friction Reinforcement: Sectional Design</td>
<td>580</td>
</tr>
<tr>
<td>9.6.2.3</td>
<td>Shear Friction Reinforcement: Segment Design</td>
<td>582</td>
</tr>
<tr>
<td>9.7</td>
<td>Flexure: Working Stress Analysis and Design</td>
<td>585</td>
</tr>
<tr>
<td>9.7.1</td>
<td>Extreme Loadings</td>
<td>585</td>
</tr>
<tr>
<td>9.7.2</td>
<td>Stress Inequality Conditions</td>
<td>586</td>
</tr>
<tr>
<td>9.7.3</td>
<td>Feasible Domain, Limit Kern, Steel Envelopes</td>
<td>590</td>
</tr>
<tr>
<td>9.7.4</td>
<td>Cracking Moment</td>
<td>591</td>
</tr>
<tr>
<td>9.7.5</td>
<td>Minimum Section Moduli of Composite Sections</td>
<td>591</td>
</tr>
<tr>
<td>9.7.6</td>
<td>Example: Selection of Optimum Beam from a Given Set of Beams</td>
<td>594</td>
</tr>
<tr>
<td>9.8</td>
<td>Flexure: Ultimate Strength Analysis and Design</td>
<td>597</td>
</tr>
<tr>
<td>9.9</td>
<td>Designing for Shear and Torsion</td>
<td>599</td>
</tr>
<tr>
<td>9.10</td>
<td>Deflections</td>
<td>600</td>
</tr>
<tr>
<td>9.10.1</td>
<td>Sequence of Computations</td>
<td>601</td>
</tr>
<tr>
<td>9.11</td>
<td>Example: Prestressed Composite Floor Beam</td>
<td>602</td>
</tr>
<tr>
<td>9.12</td>
<td>AASHTO LRFD Provisions on Interface Shear</td>
<td>616</td>
</tr>
<tr>
<td>9.12.1</td>
<td>General Design Approach</td>
<td>617</td>
</tr>
<tr>
<td>9.12.2</td>
<td>Factored Interface Shear Force per Unit Length of Interface, $V_{ah}$</td>
<td>618</td>
</tr>
<tr>
<td>9.12.3</td>
<td>Nominal Interface Shear Resistance per Unit Length, $V_{nh}$</td>
<td>619</td>
</tr>
<tr>
<td>9.12.4</td>
<td>Minimum Interface Shear Reinforcement</td>
<td>621</td>
</tr>
<tr>
<td>9.12.5</td>
<td>Practical Recommendation</td>
<td>622</td>
</tr>
<tr>
<td>9.12.6</td>
<td>Example</td>
<td>623</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>625</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>626</td>
</tr>
</tbody>
</table>

# Chapter 10

**Continuous Beams and Indeterminate Structures**

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Advantages and Forms</td>
<td>629</td>
</tr>
<tr>
<td>10.2</td>
<td>Necessary Analytical Background</td>
<td>632</td>
</tr>
<tr>
<td>10.3</td>
<td>Sign Convention and Special Notation</td>
<td>633</td>
</tr>
<tr>
<td>10.4</td>
<td>Secondary Moments and Zero-Load-C (ZLC) Line</td>
<td>634</td>
</tr>
<tr>
<td>10.5</td>
<td>Example: Secondary Moments and Concordancy Property</td>
<td>637</td>
</tr>
<tr>
<td>10.6</td>
<td>Linear Transformation</td>
<td>640</td>
</tr>
<tr>
<td>10.7</td>
<td>Concordant Tendons</td>
<td>641</td>
</tr>
<tr>
<td>10.8</td>
<td>External Loads Equivalent to Prestressing</td>
<td>643</td>
</tr>
<tr>
<td>10.8.1</td>
<td>Concept of Equivalent Load</td>
<td>644</td>
</tr>
</tbody>
</table>
10.8.2 Application of Equivalent Load to a Continuous Tendon 646
10.8.3 Example: Equivalent Load 647
10.8.4 Example: Equivalent Load for Circular and Parabolic Tendon Profile 650

10.9 Prestressing Moment and Elastic Stresses 654
10.9.1 Moment Due to Prestressing, $M_F$ 654
10.9.2 Example: Prestressed Moments by the Equivalent Load Method 656
10.9.3 Elastic Stresses in a Continuous Beam 661

10.10 Design Aids 662

10.11 Working Stress Analysis and Design 666
10.11.1 Assumptions 666
10.11.2 Analysis or Investigation 666
10.11.3 Design 667

10.12 Limit Kern and Limit Zone 669

10.13 Load-Balancing Method 671
10.13.1 General Approach 671
10.13.2 Load Balancing of Edge-Supported Slabs 674
10.13.3 Example: Load Balancing of an Edge-Supported Slab 676
10.13.4 Load Balancing of Frames 678
10.13.5 Limitations of Load Balancing 679

10.14 Ultimate Strength Analysis 680
10.14.1 Treatment of Secondary Moments 680
10.14.2 Limit Analysis 680
10.14.3 Redistribution of Moments 683
10.14.4 Secondary Moment and Moment Redistribution 685
10.14.5 Prediction of Plastic Rotation in PPC Beams 686

10.15 Example: Design of a Prestressed Continuous Beam 687

10.16 Useful Design Aids for Continuous Beams 698
References 702
Problems 703

Chapter 11 Prestressed Concrete Slabs 709

11.1 Slab Systems 709
11.1.1 General Design Approach 713

11.2 Unbonded Tendons in One- and Two-Way Slab Systems 714
11.2.1 Stress at Ultimate in Unbonded Tendons 715

11.3 Design of One-Way Slabs 717
11.3.1 Design Procedure 718
11.3.2 Minimum Bonded Reinforcement 720
11.3.3 Temperature and Shrinkage Reinforcement 721
11.3.4 Additional Design Notes 721
11.3.5 Deflection 722

11.4 Example: Design of a Five-Span Continuous One-Way Slab Prestressed with Unbonded Tendons 722

11.5 Characteristics of Two-Way Flat Slabs 729
11.5.1 Load Path 729
11.5.2 Reinforcement Layout 730
11.5.3 Theoretical Distribution of Moments 732
11.5.4 Special Notations 732

11.6 Analysis and Design Methods 734
11.6.1 Analysis 734
11.6.2 Design 734
11.6.3 Load Balancing 734
11.7 Analysis by the Equivalent-Frame Method 736
  11.7.1 General Approach 737
  11.7.2 Computation of Moments and Shear Forces 737
11.8 Design Distribution of Moments and Tendons 740
11.9 Preliminary Design Information and Design Tips 743
  11.9.1 Slab Thickness and Reinforcement Cover for Fire Safety 744
  11.9.2 Punching Shear 744
  11.9.3 Average Prestress 744
  11.9.4 Nonprestressed Reinforcement 745
  11.9.5 Deflection 745
11.10 Prestressed Flat Plates: Design for Flexure 745
  11.10.1 Working Stress Design 745
  11.10.2 Allowable Stresses 746
  11.10.3 Ultimate Strength Design 747
  11.10.4 Minimum Bonded Reinforcement 747
  11.10.5 Integrity Tendons and Other Reinforcement 749
  11.10.6 Nominal to Cracking Moment Condition 750
11.11 Flat Plates: Design for Shear 750
  11.11.1 Concrete Shear Capacity 750
  11.11.2 Transfer Moment Between Columns and Slab 753
  11.11.3 Maximum Shear Stress in Critical Section 756
  11.11.4 Design Tips 761
  11.11.5 Shear Reinforcement 761
11.12 Deflection of Flat Plates 764
  11.12.1 Elastic Solution 764
  11.12.2 Equivalent Frame Approach 768
11.13 Summary of Design Steps for Two-Way Prestressed Flat Plates 771
11.14 Example: Design of a Two-Way Prestressed Flat Plate 772
11.15 Fiber Reinforcement for Punching Shear 790
References 791
Problems 794

Chapter 12  Analysis and Design of Tensile Members 797
12.1 Types of Tension Members 797
12.2 Advantages of Prestressed Concrete Tension Members 799
  12.2.1 Example: Relative Deformation of Tension Members 800
12.3 Behavior of Prestressed Concrete Tension Members 801
12.4 Analysis of Tension Members 805
  12.4.1 Service Stresses, Decompression, Cracking and Ultimate Load 805
  12.4.2 Short- and Long-Term Deformations in Linear Members 809
  12.4.3 Example: Analysis-Investigation of a Tension Member 811
12.5 Optimum Design of Tension Members 814
  12.5.1 Formulation of Design Criteria 814
  12.5.2 Design Approximations 819
  12.5.3 Minimum Cost Solution 820
  12.5.4 Example: Minimum Cost Design of Tensile Member 822
13.8.2 Effective Length Factor $k$ 895
13.8.3 Effective Slenderness Ratio and Slenderness Condition 897
13.8.4 ACI Moment Magnifier Procedure for Non-Sway Frames 899
13.8.5 ACI Moment Magnifier Procedure for Sway Frames with $22 < kl_u/r < 100$ 901
13.8.6 Additional Design Checks 905
13.8.7 Design According to the PCI Committee on Columns 905

13.9 Example: Slender Column Using the PCI Approach 906
13.9.1 Non-Sway or Braced Column 906
13.9.2 Sway or Unbraced Column 911

13.10 Design Expedients and Design Aids 914
13.10.1 Preliminary Dimensioning 914
13.10.2 Design Charts: Load-Moment Interaction Diagrams 915

13.11 Biaxial Bending 924

13.12 New Design Methodology for Slender Prestressed Columns 927
13.12.1 Example: Computation of $EI$ for a Slender PC Column Using Shuraim and Naaman’s Procedure 930

13.13 Concluding Remarks 933

References 933
Problems 936

Chapter 14 Prestressed Concrete Bridges 939

14.1 Scope 939
14.1.1 Special Design Characteristics of Bridge Members 941

14.2 Types of Bridges 941
14.2.1 Short-Span Bridges 943
14.2.2 Medium- and Long-Span Bridges Using Precast Beams 943
14.2.3 Long- and Very Long-Span Bridges 951

14.3 Rational Evolution of Bridge Form with Span Length 956
14.3.1 Evolution of Deck Section 956
14.3.2 Evolution of Support Structure and Form 957

14.4 Special Construction Techniques for Bridges 960
14.4.1 Segmental Construction and Cable Stayed Bridge Construction 960
14.4.2 Truss Bridges 964
14.4.3 Stress Ribbon or Inverted Suspension Bridges 965
14.4.4 Use of New Materials 969

14.5 Design Specifications and General Design Philosophy 972
14.5.1 Limit States 972
14.5.2 Load Combinations, Load Factors and Resistance Factors 974
14.5.3 Allowable Stresses for Service Limit States 978

14.6 Bridge Live Loads 980
14.6.1 Traffic Lane and Design (or Loading) Lane 980
14.6.2 Basic Types of Live Loads 981
14.6.3 Live Load Combinations for Design 982
14.6.4 Conditions of Application of Live Loads 983
14.6.5 Impact Factor 985
14.6.6 Multiple Presence Factor 985
14.6.7 Pedestrian Load and Sidewalk Load 985
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.2</td>
<td>Elements of Strut-and-Tie Models</td>
<td>1067</td>
</tr>
<tr>
<td>15.2.1</td>
<td>Assumptions</td>
<td>1068</td>
</tr>
<tr>
<td>15.2.2</td>
<td>Mechanical Requirements and Geometry Rules</td>
<td>1069</td>
</tr>
<tr>
<td>15.2.3</td>
<td>Requirements for Nodal Zones</td>
<td>1069</td>
</tr>
<tr>
<td>15.2.4</td>
<td>External and Unbonded Prestressing Tendons</td>
<td>1070</td>
</tr>
<tr>
<td>15.2.5</td>
<td>Terminology / Notation</td>
<td>1071</td>
</tr>
<tr>
<td>15.3</td>
<td>Design Steps to Build a Strut-and-Tie Model (STM)</td>
<td>1071</td>
</tr>
<tr>
<td>15.3.1</td>
<td>Initial Checks</td>
<td>1071</td>
</tr>
<tr>
<td>15.3.2</td>
<td>Design Steps</td>
<td>1072</td>
</tr>
<tr>
<td>15.4</td>
<td>Design Philosophy</td>
<td>1076</td>
</tr>
<tr>
<td>15.5</td>
<td>Design of Ties</td>
<td>1076</td>
</tr>
<tr>
<td>15.5.1</td>
<td>Prestressing Tendons</td>
<td>1077</td>
</tr>
<tr>
<td>15.6</td>
<td>Design of Struts</td>
<td>1078</td>
</tr>
<tr>
<td>15.7</td>
<td>Design of Nodal Zones</td>
<td>1081</td>
</tr>
<tr>
<td>15.7.1</td>
<td>Assumptions</td>
<td>1081</td>
</tr>
<tr>
<td>15.7.2</td>
<td>Dimensioning</td>
<td>1081</td>
</tr>
<tr>
<td>15.7.3</td>
<td>Anchorages</td>
<td>1082</td>
</tr>
<tr>
<td>15.7.4</td>
<td>Nominal Strength</td>
<td>1083</td>
</tr>
<tr>
<td>15.8</td>
<td>STM by AASHTO LRFD</td>
<td>1084</td>
</tr>
<tr>
<td>15.9</td>
<td>Anchorage Zones of Prestressed Members</td>
<td>1085</td>
</tr>
<tr>
<td>15.10</td>
<td>Example: Anchorage Zone Design by STM</td>
<td>1087</td>
</tr>
<tr>
<td>15.10.1</td>
<td>Two Spread-Out Anchorages</td>
<td>1088</td>
</tr>
<tr>
<td>15.10.2</td>
<td>Two Anchorages Placed Close to Each Other</td>
<td>1097</td>
</tr>
<tr>
<td>15.11</td>
<td>Dapped-End Beams</td>
<td>1098</td>
</tr>
<tr>
<td>15.12</td>
<td>Example: Dapped-End Beam Design by STM</td>
<td>1100</td>
</tr>
<tr>
<td>15.13</td>
<td>Examples of Applications of Strut-and-Tie Models to Various Structures</td>
<td>1107</td>
</tr>
<tr>
<td>15.14</td>
<td>Concluding Remarks</td>
<td>1113</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>1113</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>1115</td>
</tr>
</tbody>
</table>

Appendix A | List of Symbols | 1117
Appendix B | Unit Conversions | 1130
Appendix C | Typical Post-Tensioning Systems | 1133
Appendix D | Answers to Selected Problems | 1153
Appendix E | Examples of Standard Precast / Prestressed Beams | 1159
INDEX |                           | 1167